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MULTIGRID FLOW SOLUTIONS IN COMPLEX 
TWO-DIMENSIONAL GEOMETRIES 

D. RAYNER 
Thermo-fluid Mechanics Research Centre, University of Sussex, Brighton BNI 9QT. U.K. 

SUMMARY 
A finite difference solution algorithm is described for use on two-dimensional curvilinear meshes generated 
by the solution of the transformed Laplace equation. The efficiency of the algorithm is improved through the 
use of a full approximation scheme (FAS) multigrid algorithm using an extended pressure correction scheme 
as smoother. The multigrid algorithm is implemented as a fixed V-cycle through the grid levels with a 
constant number of sweeps being performed at each grid level. 

The accuracy and efficiency of the numerical code are validated using comparisons of the flow over two 
backward step configurations. Results show close agreement with previous numerical predictions and 
experimental data. Using a standard Cartesian co-ordinate flow solver, the multigrid efficiency obtainable in 
a rectangular system is shown to be reproducible in two-dimensional body-fitted curvilinear co-ordinates. 
Comparisons with a standard one-grid method show the multigrid method, on curvilinear meshes, to give 
reductions in CPU time of up to 93%. 

KEY WORDS Multigrid Body-fitted co-ordinates 

1. INTRODUCTION 

In this paper a finite difference solution algorithm is described for use on two-dimensional 
curvilinear meshes. The meshes are generated by the solution of the transformed Laplace 
equation to produce a smooth variation between successive grid nodes. The method of solution 
outlined within this paper represents a stage in the development of the required solution 
algorithm. The motivation for the work is the gas turbine industry's interest in predictions of the 
fluid flow and heat transfer that take place in the compressor section of commercial gas turbine 
engines. Of particular interest is the heat transfer that takes place between the bottom of a stator 
blade and the rotating compressor drum. 

Owing to irregular boundaries, there are a variety of flows of practical interest, such as in an 
axial compressor, for which rectangular meshes are unsuitable. Such domains require an 
alternative grid system that conforms to its boundaries. As these meshes are required to describe 
complex two-dimensional domains with refinement near the boundaries (to allow the accurate 
modelling of boundary layer flows, non-orthogonal body-fitted co-ordinates are used). 

The CPU times necessary for convergence on such grids are generally expensive. In an effort to 
reduce the costs involved the multigrid acceleration technique of Brandt' has been applied to the 
solution method. For simplicity, the fluid under consideration has been taken as steady, laminar, 
incompressible and isothermal. 
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2. TRANSFORMATION OF THE GOVERNING EQUATIONS 

For the given flow assumptions the momentum equations in the physical Cartesian co-ordinate 
plane are given by 

where x, y denote the co-ordinate axes and 4 (= u, v )  represents the relevant component of 
velocity; p+ is the pressure gradient in the co-ordinate direction, p is the viscosity and p is the 
density. Also, the continuity equation is given by 

au av 
ax ay 
-+-=O. 

Having obtained the physical (x, y)-mesh (Figure l(a)) from the solution of the transformed 
Laplacian equation on the rectangular, non-uniform, body-fitted ( 5 ,  ?)-mesh (Figure 1 (b)),' the 
equations of motion can be rewritten in the ( 5 ,  ?)-plane while maintaining the same dependent 
variables. Using the transformation described by Peyret and Vi~iand,~ owing to the conservative 
form of the resulting equations, the momentum equations (1) are transformed to 

where t,q are the transformed co-ordinate axes and U ,  V are the contravariant velocity 
components in the (5 ,  q)-directions respectively. These relate to the covariant (u, 0)-velocities by 

u = My, - vxq,  v= ux,: - My(, (4) 
and the Jacobian, J of the transformation between the physical co-ordinate system and the 
transformed co-ordinate system is defined as 

J = X g Y q  - X q Y g ,  (5 )  
the subscript denoting the partial derivative of first order. Also in equation (3) the geometric 
relations (ql, q2,  q 3 )  and the transformed pressure gradient terms (j.$) are given by 

41 =xll"+y:, 42= -X,:Xq-Y,:Yq, 4 3  = x: +Y :, 
8. = Ys Ps -YgPq, B" = X t P q  - XqP,:. (6) 

Similarly, the transformation of the continuity equation (2) is given by 

au av -+-=O. 
a5  a? (7) 

(4 pty*ul P h  @) ! k d d  p h e .  

Figure 1. Grid configurations 
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3. NUMERICAL SOLUTION METHOD 

In the discretization of the momentum and continuity equations the staggered mesh of Harlow 
and Welch4 is used. This involves staggering the location of the velocity components half a step 
size back (in the appropriate co-ordinate direction) from the location of the pressure nodes 
(Figure 2) to prevent a ‘chequerboard’ pressure field re~ulting.~ 

3.1. Velocity and pressure corrections 

Following the SIMPLEC formulation of Van Doormaal and Raithby? corrections to the 
guessed velocity fields are made based upon corrections to the guessed pressure field. Braaten and 
Shyy7 found that correcting the contravariant velocity components and using these to make 
corrections to u, u, rather than vice versa, led to greater stability of the solution algorithm and 
allowed lower attainable values of the mass residual. Thus the corrections to the guessed 
contravariant velocity fields are obtained (using the notation relative to the appropriate velocity 
location) from 

where 4*  denotes the guessed value of 4,4’ denotes the correction made to 4 and 

(10) 
1 

du = 
1 

d,, = 
a p  -a, 1 a n b  ’ a p - a u  C a n b  . 

In their present form equations (8) and (9) would give a pressure correction equation whose 
source term contains reference to a number o€ pressure nodes not contained within the usual five- 

Figure 2. Location of the staggered variables 
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point scheme. Thus an accurate representation of the source term would require repeated 
solution of the pressure correction equation for the five-point scheme to be retained. Shyy et d.,* 
however, found that neglecting the cross-multiplied geometric terms (xcx,, and y,y,) in equations 
(8) and (9) gave faster convergence rates and reduced the source term to the mass imbalance 
through the control volume. The omission of such terms does not constitute a loss of accuracy, 
since such terms are relatively small and because the source term of the pressure correction 
equation tends to zero as the velocity fields converge. Hence corrections to U, V are obtained 
from 

Analytically, the corrections to u, u can be found from the inversion of equations (4) as 

1 
J 

u = - ( U x e +  VX,), (13) 

(14) 
1 
J 

v = - ( U y e +  Vy,). 

However, owing to the interpolation required for the staggering of the velocity components, 
equations (13) and (14) would introduce an inconsistency between the (U, V)-  and (u, u)-velocity 
fields. In matrix notation equations (4) could be written as 

MU = U, (15) 

and so a consistent way of correcting the (u*, v*)-velocities could be obtained from the corrected 
contravariant velocities via equation (1 5) as 

u = M - U. 
Since M is a large, sparse matrix and the (u*, u*)-velocities need to be corrected from U, Vat the 
end of each iteration, the use of matrix inversion or direct solution procedures is impractical. 
Also, M is not guaranteed to be diagonally dominant and so iterative methods would be costly. 
Thus the (u * ,  u*)-velocity fields are corrected via a number of Dyakanov iterations’ as follows. 

(17) 

where u* represents the guessed value of u. If the matrix H is similar to the matrix My then an 
iterative method of this type can be shown to converge very quickly. A suitable matrix H can be 
found from the calculation of the inconsistent (u, u)-velocities using equations (1 3) and (14). In 
matrix notation these equations can be expressed as 

(16) 

The problem is first reformulated in the form 

H( u - u *) = U - MU *, 

ii=GU, (18) 
where the tilde is used to indicate that ii is not consistent with equation (15) because of 
interpolation errors. In the limit the interpolation errors would vanish as the mesh size is reduced 
to zero, so h u .  Hence in the limit of zero mesh size we would have 

G - i i - + ~ -  = u = MU, (19) 
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so that 

G -  +M. 

For a finite mesh size G- serves as a close approximation to M and hence is a suitable choice 
for H. Equation (17) thus becomes 

G -  (U - u *) = U - MU*, (21) 
which, premultiplied by G, gives 

u = u * + GU - G( MU*). 

By treating the current value of I(, v as the new guessed values, the repeated solution of equation 
(22) provides a consistent means by which the guessed (u, v)-velocities can be corrected from the 
updated contravariant velocities. In practice the use of this method is found to converge very 
quickly and adds little to the overall CPU time of the solution algorithm. 

3.2. The multigrid algorithm 

The multigrid method of Brandt' has been found to be very efficient in the solution of fluid 
dynamics problems. The particular method used, a FAS multigrid algorithm implemented as a 
fixed V-cycle, is outlined below. 

The non-linear, partial differential equations of motion (N( 4) =f) are represented in discrete 
form on a fine mesh Mk by 

Unless the dependent variables are correct, there is a defect associated with each variable at each 
mesh point within the solution domain, given by 

N k ( 4 k ) = f k .  (23) 

dk =fk - N k (  4 (24) 
where 4; is the current approximation to 4k. If we assume a correction $, which needs to be 
added to 4; to complete the solution, the original equations (23) can be rewritten as defect 
equations 

N k ( 4 ; + $ k ) = d k + N k ( 4 ; ) -  (25) 
The fine grid solution is then smoothed using the pressure correction method. This gives 
negligible high-frequency errors compared to the low-frequency errors. The defect equations (25) 
are then represented on a coarser mesh MI+ by 

(26) 
where denotes the restricted value of x,. If we note that equation (26) is of the form of 
equation (23), the process can be repeated to a coarser mesh M,,, and so on. On the coarsest 
mesh M,+, an equation of the form (26) can then be solved to give corrections needed to the 
coarsest mesh solution, @, +*. These corrections are then interpolated back onto successively finer 
meshes by the repeated solution of 

N k  + 1 (4?+ 1 + q k +  1 ) = d i +  1 + N i +  1 ($?+ 11, 

$ ; = I ( $ i +  11, (27) 

where I is an interpolation operator, to eventually give an approximation to the fine mesh 
corrections $,. At each interpolation the equations are again smoothed using the pressure 
correction method. A new approximation to the fine grid solution 4, can then be found from 

4: = 4; +&. (28) 
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Unlike a one-grid method, the multigrid method is expected to give grid-independent conver- 
gence, so that the number of iterations required to achieve a converged solution is independent of 
the fine mesh size. Thus, as the number of mesh nodes increases, the multigrid method is expected 
to give increasing savings in CPU time over the one-grid method. 

3.3. The solution procedure 

A finite difference representation of the equations of motion is made on a staggered, non- 
uniform, rectangular ( (, q)-mesh employing the ‘hybrid’ upwinding scheme of Patankar and 
S~alding.~ The momentum equations are then solved using one sweep of an alternating direction, 
five-point TDMA solver. Implicit underrelaxation is used in the solution of the momentum 
equations, via the coefficients, owing to their non-linearity. Explicit underrelaxation is used for 
the pressure correction, but no relaxation is required for the calculation of the contravariant 
velocities. The derivative terms such as x, are calculated by second-order differencing at each 
location they are required. The geometric terms, q1 , q2,  q3,  on the other hand, are only calculated 
at the major grid nodes and interpolated, where required, to the control volume faces. This is 
consistent with the technique used by Shyy et a1.,8 who found this to be a more accurate way of 
fdfilling the physical conservation laws. Following the update of the contravariant velocities, a 
number of sweeps of the pressure correction equation are performed to smooth the solution. The 
velocities are then updated via the velocity correction equations and a number of D’yakanov 
iterations, and the guessed pressure field is updated. This defines one relax sweep. 

After a number of relax sweeps the defects are computed from equation (25). The variables and 
their defects are then restricted down onto the next coarsest mesh. The coarse grids and the coarse 
mesh location of the physical co-ordinates (x, y )  are generated by simply omitting every other 
principal node in each direction, the velocities being staggered as on the fine mesh. The derivative 
terms and geometric terms are then calculated as before on the coarse mesh and the contravariant 
velocities recalculated. A nine-point grid-weighted restriction operator is used for the variables 
and defects at the principal nodes. For the staggered velocities a six-point operator is employed, 
since their coarse grid positions are not coincident with any of the fine grid except at the 
boundaries. 

Equations (26) are then smoothed and the procedure repeated until the coarsest mesh is 
reached, on which a large number of relax sweeps are used in order to obtain a reasonable 
solution. After the corrections have been calculated they are prolonged to the next finest mesh by 
bilinear interpolation. The contravariant velocities are then calculated from the interpolated 
(4 u)-velocities and the equations smoothed using a number of sweeps before interpolation to the 
next finest level. An extra stability measure is introduced by underrelaxing the corrections, so that 
equation (28) is replaced by 

4;=4;+8*;Y (29) 
which allows fewer relax sweeps (since it allows a less smooth solution) than would otherwise be 
necessary to achieve convergence. By repeating the process, the corrections to the fine mesh 
solution are eventually obtained. 

3.4. Boundary conditions 

The test cases considered within this paper have dimensions chosen to facilitate comparison 
with other authors and so that known velocity fields can be prescribed at the boundaries. The 
boundary conditions at solid walls are set using the no-slip condition. A uniform velocity (ti) is set 
at inlet and a fully developed velocity profile at outlet. At both these boundaries the u-velocity 
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component is set via the continuity equation (2). Pressure boundaries are set so that no pressure 
correction takes place at any of the boundaries. 

4. RESULTS 

In the solution of the test cases considered, underrelaxation factors of 0.6 are used for the 
momentum equations (a,,, aJ, 1-0 for the pressure correction equation (ap )  and 0-8 for the 
multigrid corrections (p). Also, two relax sweeps are performed in moving between the grid levels, 
and six relax sweeps performed on the coarsest mesh. For the curvilinear mesh solutions only one 
Dyakanov iteration is applied, and for both mesh configurations five pressure sweeps are used for 
the augmented backward step test case and two for the backward step test case. 

4.1. Flow over an augmented backward step 

A schematic representation of the physical domain for this test case is shown in Figure 3(a). 
Using comparisons with previous authors' findings, the augmented backward step test case has 
been chosen to validate the accuracy of the transformed computer code. Reynolds numbers 
(Re,, = hzi/v, where h is the step height and v is the kinematic viscosity) of 73 and 229 are chosen. 

Solutions are obtained on curvilinear meshes with 129 x 65,65 x 33 and 33 x 17 interior grid 
nodes. The distributions of the grid nodes within the solution domain are chosen so as to give 
refinement in the region of the step. All test cases are started from the initial conditions of zero 
flow. Convergence is taken when the largest root-mean-square (RMS) change of the normalized 
variables falls below a tolerance level of 2.5 x 

Figure 4 shows a velocity profile comparison with the numerical predictions of Atkins et al." 
and the experimental results of Denham and Patrick." The current numerical predictions on a 
129 x 65 mesh show a close agreement with the findings of the above authors. Figure 5 shows a 
comparison of the length of the recirculation zone with the Reynolds number. The reattachment 
length (&) is measured from the step face to the point of reattachment. Additional computations 
at Reynolds numbers of 10,50,100,125,150,175 and 200 have been performed using 129 x 65 
grid nodes to give a more complete comparison. Again the current numerical predictions show 
good agreement with the findings of Atkins et al. and Denham and Patrick. 

A summary of the performance of this test cases is given in Tables1 and I1 for Reynolds 
numbers of 73 and 229 respectively. The CPU times quoted are for the VAX 8530 computer. The 
solutions give grid-independent convergence with significant reductions in CPU time over the 
one-grid method. The reductions in CPU time are seen to increase with increased grid size, with 

1 
O.Olrn 

I 'T, 041Srn 4 I 
mrn -0.lm- 
- 0  1.p- 
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Figure 5. Reattachment length comparison 
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Table I 

Grid size No. of grid levels Iterations required CPU time required 

33 x 17 1 
2 

65 x 33 1 
3 

129 x 65 1 
4 

113 00:01:55 
12 00:Ol: 19 

3 14 00: 19: 16 
14 00: 05 : 46 
67 1 02: 53 : 22 
14 OO:23: 14 

Table I1 

Grid size No. of grid levels Iterations required CPU time required 

33 x 17 1 129 00:02: 13 
2 18 00:Ol: 56 

65 x 33 1 
3 

129 x 65 1 
4 

262 00: 16: 17 
17 00:07:00 
616 02 : 39: 41 
19 00:32:00 

an average saving of 22% on a 33 x 17 mesh, a 64% saving on a 65 x 33 mesh and up to an 87% 
saving on a 129 x 65 mesh. 

4.2. Flow over a backward step 

A schematic representation of the physical domain for this test case is shown in Figure 3(b). 
This test case has been chosen to compare the body-fitted co-ordinate solutions with the standard 
rectangular co-ordinate solutions. Reynolds numbers of 50 and 150 are chosen. Solutions are 
obtained on curvilinear and rectangular meshes with 129 x 65,65 x 33 and 33 x 17 interior grid 
nodes. The arrangements of the rectangular grids are chosen so as to be comparable with the 
curvilinear grids. 

The convergence of the multigrid and one-grid methods for both grid configurations is shown 
in Figures 6(a) and 6(b), Res being used to denote the average RMS of the normalized residuals. 
These show that both mesh arrangements gave similar convergence characteristics and graphic- 
ally demonstrate the benefits of the monotonic convergence of the multigrid method over the one- 
grid method. Figure 7 shows a comparison of the predicted shear stress on both 129 x 65 mesh 
configurations. The wall co-ordinate is taken as the distance along the lower boundary. There is 
seen to be a very close agreement between the curvilinear and rectangular mesh solutions. 

Tables I11 and IV give a summary of the test case performance for Reynolds numbers of 50 and 
150 respectively. In the multigrid method the number of grid levels used is the same as in the 
previous test case. Both the curvilinear and rectangular mesh solutions show the multigrid 
method to give nearly grid-independent convergence and to be beneficial over the one-grid 
method. The curvilinear mesh gave an average multigrid saving of 44% compared to 62% on a 
rectangular mesh using 33 x 17 grid nodes, 74% compared to 83% using 65 x 33 grid nodes and 
93% compared to 94% using 129 x 65 grid nodes. Thus similar savings in CPU time are obtained 
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(b) one-grid 
(a) mdti& 

Figure 6. Convergence characteristics for Re,, = 50 

Figure 7. Shear stress comparison 

Table I11 

Iterations required CPU time required 
Grid 

Grid size configuration One-grid Multigrid One-grid Multigrid 

33 x 17 Curvilinear 176 11 00:02:33 00:01:02 
Rectangular 273 12 00:02:57 00:00:56 

65 x 33 Curvilinear 455 13 00:24:26 0:04:35 
Rectangular 725 14 00:28:56 00:04:00 

129 x 65 Curvilinear 2247 20 08:26:33 00:28:22 
Rectangular 2722 20 07:19:25 00:22:07 
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Table IV 

Grid 
Grid size configuration 

Iterations required CPU time required 

One-grid Multigrid One-grid Multigrid 

33 x 17 Curvilinear 
Rectangular 

65 x 33 Curvilinear 
Rectangular 

129 x 65 Curvilinear 
Rectangular 

152 17 
238 15 
353 18 
615 18 

1484 20 
2007 23 

00:02:10 00:01:33 
00:02:35 00:01:08 
00:18:58 00:06:21 
00:24:49 00:05:01 
05:34:32 00:28:16 
05:22:22 00:24:55 

from the use of the multigrid method on both mesh configurations, although direct comparisons 
are difficult since the rectangular mesh solutions contain fewer grid nodes within the solution 
domain owing to the blocking required. 

5. CONCLUSIONS 

A multigrid method using an extended pressure correction scheme as smoother is presented for 
flows on non-orthogonal grids generated by the inversion of Laplace’s equation. The efficiency 
and accuracy of the transformed computer code are verified using comparisons for the flow over 
two backward step configurations. Comparisons with a one-grid method show the multigrid 
method to be substantially more efficient, and using a standard rectangular flow solver, the 
multigrid efficiency obtainable in rectangular systems is shown to be reproducible in body-fitted 
co-ordinates. 

The results obtained represent a stage in the development of the required solution algorithm. 
Thus the convergence and accuracy of the current numerical code do not necessarily represent the 
optimum values and with further investigation may be improved upon. The results obtained, 
however, provide an encouraging base from which to extend the method to more realistic flow 
properties in complex three-dimensional cylindrical polar geometries. 
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